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ABSTRACT

We continue the language theoretic study of operations suggested by the gene unscrambling process
in stichotrichous ciliates. One of the two complementary models of gene unscrambling is based on
operations inspired by the ways in which a DNA molecule can fold: hi (hairpin loop with inverted
pointers) which reverses a substring between a pointer sequence and its reverse, ld(loop with direct
pointers)-excision which deletes a substring between two pointers and dlad(double loop with alter-
nating direct pointers)-excision / reinsertion which swaps two substrings marked by pointer-pairs.
We specifically consider the closure properties of several families of languages under the operations
ld anddlad and the solvability of language equations involving these operations.
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1. Introduction

The stichotrichous ciliates, a class of single-celled organisms, has recently been the motiva-
tion for a number of papers in formal language theory. One of the intriguing properties of
ciliates is that they keep their genetic material in a scrambled form and thus need some form
of computational apparatus in order to descramble their genes and produce functional pro-
teins. For example, the gene encodingDNA polymerase� in the ciliateStylonichia Lemnae
is broken into more than 48 discrete pieces that must be reassembled in the correct order to
produce a functional gene [12]. The biological details of this process are still not yet fully
understood but are currently the subject of active investigation. Further details on the biology
of this process can be found in [15, 16, 17].

The formal study of this process has lead us not only to a better understanding of ciliate
genetics, but has also produced two models of computation that are inherently interesting in
their own right.

The first model, proposed by Kari and Landweber [10, 11] proposes two atomic operations
based on circular insertions and deletions guided by pointers within the gene. The second
model, motivated by Ehrenfeucht, Harju, Petre, Prescott and Rozenberg [4, 5, 18], consists
of three operations inspired by the ways in which a DNA molecule can fold: hi (hairpin
loop with inverted pointers) which reverses a substring between a pointer sequence and its
reverse,ld(loop with direct pointers)-excision which deletes a substring between two pointers
anddlad(double loop with alternating direct pointers)-excision /reinsertion which swaps two
substrings marked by pointer-pairs.

While the full details of the biological mechanisms underlying this process are not yet
completely understood, the reader may find further information in [15, 16, 17].

In this paper we will consider the properties of theld anddlad operations from an abstract
formal-language-theoretic viewpoint and present some newresults on thehi operation as
well. For similar studies of thehi operator and the operations in the Kari-Landweber model,
the reader is referred to [2, 3].

The layout of the paper is as follows: in Section 2 we define theld anddlad bio-operations
and investigate the closure properties of NCM and its generalizations. NCM is the class
of languages defined by nondeterministic finite automata augmented with reversal-bounded
counters (i.e., the counters can be incremented/decremented by 1 and tested for zero but the
number of alternations between nondecreasing mode and nonincreasing mode and vice-versa
is bounded by a fixed constant) [8]. It is known [6] that NCM is the smallest class of lan-
guages containing the regular sets that is closed under the operations of homomorphism,
intersection, and shuffle (section 2 gives the precise definition). Section 3 considers the clo-
sure properties of languages defined by time- and space-bounded Turing machines. Section 4
investigates the closure properties of two families of L-systems, namely 0L and ET0L underhi anddlad. Section 5 briefly looks at language equations involving thedlad andld opera-
tion and provides some general results concerning any language equation involving a unary
operator. Section 6 provides a summary and conclusions.

The notations used in the paper are summarized as follows. Analphabet� is a finite non-
empty set. A wordw over� is an element of the free semigroup (denoted�+) generated by
the letters of� and the catenation operation. The length of a word, writtenjwj, is equal to
the number of letters in the word. In the free monoid�� we also allow the empty word�
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wherej�j = 0. A languageL is a, possibly infinite, set of words over a given alphabet. The
complement of a languageL is writtenL and is defined asL = �� n L.

For further details on basic formal language theory, the reader is referred to [19].

2. The Families NCM, NFCM, and NPCM

In this section, we investigate the closure properties of various families (or classes) of lan-
guages underld anddlad bio-operations [5, 18, 4]. Our objective is to identify large classes
of recursive languages that are closed under these bio-operations. We will use the terms
“family” and “class” interchangeably in the paper. We first define theld operation from [4].

Definition 1 Let� be a word in�+. Theld operation on�, denoted by ld(�) is defined as
ld(�) = fxpzj� = xpypz; x; z 2 ��; y 2 �+; p 2 �+g.

In the definition above, we sayp is a pointer. The definition can then be extended to
languages:

ld(L) = [�2L ld(�); for anyL � �+:
We now show that allowing pointers of arbitrary length is equivalent to allowing pointers

of length one.

Lemma 1 For anyw 2 �+, ld(w) = fxazjw = xayaz; x; z 2 ��; y 2 �+; a 2 �g.
Proof. “�” Consideru 2 ld(w). Then u is of the formxpz wherex; z 2 �� andp 2 �+. We can thus writeu = xp1p2:::pnz, n � 1 wherew = xp1p2:::pnyp1p2:::pnz
andp = p1p2:::pn with pi 2 �. We now rewriteu = (xp1p2:::)pnz = x0pnz andw =(xp1p2:::)pn(yp1p2:::)pnz = x0pny0pnz wherex0 = xp1p2:::pn�1 andy0 = yp1p2:::pn�1
and the inclusion follows.

“�” Obvious. 2
Next, we give the definition of thedlad operation [4].

Definition 2 Let� be a word in�+. Thedlad operation on�, denoted by dlad(�) is defined
as dlad(�) = fupbqwpaqvj� = upaqwpbqv; u; w; v 2 ��; a; b; p; q 2 �+g.

We say thatp andq are pointers above. This definition is extended to languagesas follows:

dlad(L) = [�2Ldlad(�); for anyL � �+:
Similarly to the result forld above, we now show that we can consider pointers of length

one without loss of generality in thedlad operation.

Lemma 2 dlad(w) = fxa�bya�bzjw = xa�bya�bz; x; y; z 2 ��; �; � 2 �+; a; b 2 �g:
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Proof. “�” Consideru 2 dlad(w). Thenu is of the formu = xp�qyp�qz wherew =xp�qyp�qz andp; q; �; � 2 �+, x; y; z 2 ��. Now letp = p1p2:::pn, q = q1q2:::qm wherepi; qi 2 �, n;m � 1. We can now writeu = xp1p2:::pn�q1q2:::qmyp1p2::: pn�q1q2:::qmz
andw = xp1p2:::pn�q1q2:::qmyp1p2:::pn�q1q2:::qmz. Takex0 = x, a = p1, b = q1,�0 = p2:::pn�, y0 = q2:::qmy, �0 = p2:::pn� andz0 = q2:::qmz thenu = x0a�0by0a�0bz0
wherew = x0a�0by0a�0bz0 and the inclusion follows.

“�” Trivial. 2
For k � 0, let NCM(k) be the class of nondeterministic one-way finite automata aug-

mented withk reversal-bounded counters, and NCM be the union of such classes over allk’s
(see [8] for details). Thus, at every step, a counter can be incremented by 1, decremented by
1, or not changed, and it can be tested for zero. It is reversal-bounded in that in any compu-
tation, the number of alternations between nondecreasing mode and nonincreasing mode and
vice-versa is bounded by a given constant. For notational convenience we also use NCM(k)
and NCM to denote the respective families of accepted languages, and use the same notation
to refer to a machine in the classes. Clearly, NCM defines a large class of languages (all
regular sets, some non-context-free languages, etc.) Notethan an NCM(0) hasno counter
and is an ordinary finite automaton. Hence, the class NCM(0) =REG = regular sets.

Let NPCM be an NCM augmented with an unrestricted pushdown stack. An NFCM is an
NCM augmented with a free (i.e., unrestricted) counter. An NPCM (NFCM) withk reversal-
bounded counters will be denoted by NPCM(k) (NFCM(k)). Thus, an NPCM(0) (NFCM(0))
is just an ordinary pushdown (one-counter) automaton. Hence, NPCM(0) = CF = context-free
languages, and NFCM(0) = one-counter languages.

There is a nice characterization of NCM (respectively, NPCM, NFCM) in terms of regular
sets (respectively, context-free languages, one-counterlanguages). Theshuffleu q v of two
wordsu; v 2 �� is a finite set consisting of the wordsu1v1 : : : ukvk, whereu = u1u2 : : : uk
andv = v1v2 : : : vk for someui; vi 2 ��. If L1 andL2 are two languages, theirshuffleis the
language L1 q L2 = [u2L1;v2L2 uq v:
A simple shuffle languageis a language of the form�� qfdnen j n � 0g, for some alphabet� and distinct symbolsd; e.

It is known [6] that NCM (respectively, NPCM, NFCM) is the smallest class of languages
containing the regular sets (respectively, context-free languages, one-counter languages) that
is closed under homomorphism and intersection with simple shuffle languages. In particular,
since NCM is clearly closed under homomorphism, intersection, and shuffle (i,e., ifL1 andL2 are in NCM, thenL1 q L2 is also in NCM), we see that NCM is the smallest class of
languages containing the regular sets that is closed under homomorphism, intersection, and
shuffle.

We now proceed to examine the closure of NCM (respectively, NPCM, NFCM) underld
anddlad operations. We will need the following proposition which iseasily verified using
standard constructions:

A full trio is any family of languages closed homomorphism, inverse homomorphism, and
intersection with regular sets.
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Proposition 1 NCM(k), NPCM(k), and NFCM(k) are closed under homomorphism, inverse
homomorphism, and intersection with regular sets.

Proposition 2 Every full trio is closed under ld.

Proof. Let L be a language over the alphabet�. For every symbola in �, let a:1; a:2; a:3
be new distinct symbols, and�1;�2;�3 be the set of all such symbols, respectively. We can
think of a:1; a:2; a:3 as “marked” versions of symbola.

Define a homomorphismh from (�[�1 [�2 [�3)� to�� as follows:h(a) = h(a:1) =h(a:2) = h(a:3) = a for all a in �. Let L0 = h�1(L) \ f��a:1�+2 a:3�� j a 2 �g
Now define another homomorphismg as follows: For alla in �, g(a) = g(a:3) = a andg(a:1) = g(a:2) = �. Clearly,ld(L) = g(L0). 2

The next result now follows from the two propositions above.

Corollary 1 NCM(k), NPCM(k), and NFCM(k) are closed underld.

Note that in the above proof, the purpose of the new symbols and the inverse homomor-
phism and intersection with regular sets is to obtain fromL a languageL0 where the different
components (segments) of the string are marked, i.e., everystring inL0 is of the formxpypz,
where the stringx, the firstp (which is a symbol), the stringy, the secondp, and the stringz use different alphabets. In this section, when we say that the components of a string are
marked, we will mean that they use different alphabets, i.e., inverse homomorphism and in-
tersection with regular set have already been done. Also, for notational convenience, we will
also refer to languageL0 and the machineM 0 accepting it simply asL andM , respectively.
Applying the homomorphism to remove the marks is also straightforward and we will as-
sume this is done explicitly at the end of the construction inthe proofs. The next proposition
concerns thedlad operation.

Proposition 3 NFCM and NCM are closed underdlad.

Proof. Given an NFCMM acceptingL, we will construct another NFCMM 0 acceptingdlad(L).
A configuration ofM is a triple� = (q; f; R), whereq is the state,f is the value of the

free counter, andR is an array of values of the reversal-bounded counters. Whenwe say
thatM 0 “records” a configuration�, we mean, it stores the state in its finite control, and
stores the values of the free counter and reversal-bounded counters into an auxiliary set of
counters. By using additional counters, we may assume that the original values of the free
counter and reversal-bounded counters are preserved. Thus, after recording�, M 0 can still
continue its computation (from configuration�) using the original counters. We now describe
the computation ofM 0, given a (marked) input of the form:vpyqxpwqz.M 0 will simulate the computation ofM on vpwqxpyqz. M 0 first simulatesM on input
segmentvp. After processingp, M will be in some configuration�p. Without moving its
input head,M 0 guesses a configuration�w thatM would enter starting on�p on some inputw. It records(�p; �w). M 0 also guesses two configurations�p and�y and records two
copies of each of these configuration using auxiliary counters.M 0 nows moves its input head



6

and simulates the computation ofM on y starting in configuration�p. After processingy,M checks that the configuration reached is�y. M 0 then continues the simulation ofM on
input segmentqxp starting in configuration�w. After processingqxp, M 0 checks thatM
is in configuration�p. Then readingy, M 0 checks thatM when started in�p indeed enters
configuration�w. Finally,M 0 completes the simulation ofM on the remaining input segmentqz starting in configuration�y and accepts ifM accepts. It is easily verified thatM 0 acceptsdlad(L(M)). Note that whenM is an NCM (i.e., it has no free counter), thenM 0 is also an
NCM. 2

Clearly, in the construction above, whenM does not have any counter, thenM 0 also does
not need any counter. Moreover, as mentioned earlier, the family of regular languages are
exactly the languages accepted by finite acceptors not augmented by any storage (and are
consequently equal to NCM(0)). Hence:

Corollary 2 The family of regular languages is closed underdlad.

The family of context-free languages are equal to the languages accepted by finite accep-
tors augmented by exactly one pushdown (and thus are equal toNPCM(0)). Similarly, the
family of one-counter languages are the languages acceptedby acceptors with exactly one
free counter (and are equal to NFCM(0)).

Proposition 4 The family of context-free languages and the family of one-counter languages
are not closed underdlad:

Proof. Let a; b; ; d; p; q be distinct symbols, andL = fanpbnqpmqdmjn;m � 1g.
Clearly,L is NFCM(0) and, hence, also in NPCM(0). Butdlad(L) = fanpmqpbnqdm jn;m � 1g is not context-free. 2

Remark: We do not believe that Proposition 3 can be generalized to hold for NPCM.
Let a; b; ; d; p; q be distinct symbols, andL = fxpxrqpyqyr j x 2 fa; bg�; y 2 f; dg�g.L is a context-free language, hence in NPCM. However, we believe that dlad(L) =fxpyqpxrqyr j x 2 fa; bg�; y 2 f; dg�g is not in NPCM.

The construction in Proposition 3 can be generalized in various ways. For example, let� be a permutation of(1; :::; k). For a word� in �+, and a permutation�, define�(�) =fwpx�(1)qy1:::px�(k)qyk j � = wpx1qy1:::pxkqyk, w 2 ��; x1; y1; :::; xk; yk 2 �+; p;q 2 �+g. For a languageL, �(L) is defined in the obvious way. One can show that NFCM
is closed under�. In fact, one can also have a second permutation�0 and apply this simulta-
neously ony1; :::; yk, and the closure still holds.

We can also specify that some of thexi’s (andyi’s) are to be “reversed”, e.g.,x2 is replaced
by xr5 (which is the reverse ofx5) andx3 is replaced byxr1. Then the result would still be
valid. For example, suppose we modify the definition ofdlad to r � dlad as follows:

Definition 3 For � in �+, define r-dlad(�) = fvpyrqxpwqzj� = vpwqxpyqzg.
We will show that ifL is in NFCM (respectively, NCM), thenr�dlad(L) is also in NFCM

(respectively, NCM). We will need the following result in [2, 8]:
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Proposition 5 NCM and NFCM are closed under reversal.

Lemma 3 If M is an NFCM (NCM), defineL = f��y j �; � are configurations ofM , andM on inputy starting in configuration� reaches configuration�g. (Assume that the states
and counter values in configurations� and� are written in unary using distinct symbols.)
Then

1. L can be accepted by an NFCM (NCM)M.
2. Lr (the reverse ofL) can be accepted by an NFCM (NCM)Mr .

Proof. The construction ofM is straightforward. M reads� and configures the free
counter and reversal-bounded counters to the values specified in �. Then it reads� and
records this configuration using another set of reversal-bounded counters.M then simulates
the computation ofM on inputy, and checks that the final configuration is�. The second
part follows from the above proposition. 2

Note that in the definition ofL above, the placement of� and� in the string is not
important, i.e., they can appear beforey, � can appear before�, or y can appear between the
two configurations. This is becauseM can use several sets of auxiliary counters, and before
simulatingM , M can guess the values in� and make two sets of copies, simulatesM on
inputy using one set of copy, and later when it sees� on the input, checks that the values in� agree with those that were recorded. The configurations could also be written in reverse,
i.e.,�r and�r.
Proposition 6 NFCM and NCM are closed underr � dlad.

Proof. The proof is a modification of the construction in the proof ofProposition 3, usingMr .M 0, when given a (marked) inputvpyrqxpwqz, simulates the computation ofM onvpwqxpyqz. M 0 first simulatesM on input segmentvp. After processingp, M will be
in some configuration�p. Without moving its input head,M 0 guesses a configuration�w
thatM would enter starting on�p on some inputw. It records(�p; �w). M 0 also guesses
two configurations�p and�y and records two copies of each, and then moves its its input
head onyr and simulates the computation ofMr onyr�ry�rp . Since�ry and�rp are not present
in the input,M 0 uses the values recorded in the auxiliary counters (as part of the input) in the
simulation ofMr . M 0 then continues the simulation ofM on input segmentqxp. The rest of
the construction is the same as in Proposition 3. 2

Similarly, we can define r-dlad(�) = fvpyrqxpwrqzj� = vpwqxpyqzg, and the proposi-
tion above still holds.

Finally, consider the model of a two-way nondeterministic finite automaton (with end-
markers) augmented with finitely many reversal-bounded counters (2NCM). Such a machine
is finite-crossingif there is a constantk such that in any computation, the input head crosses
the boundary between any two adjacent cells of the input at most k times. It is known that
any finite-crossing 2NCM can be converted to an equivalent NCM [8]. Hence, all the results
above are valid for finite-crossing 2NCMs.
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3. Space-Bounded and Time-Bounded Turing Machines

In this section, we investigate the closure properties of space-bounded and time-bounded
Turing Machine (TM) complexity classes underld and dlad.

For a space boundS(n), let NSPACE(S(n)) be the class of languages accepted byS(n)
space-bounded nondeterministic Turing machines, andDSPACE(S(n)) be the deterministic
class. Thus, these machines have a two-way read-only input tape (with endmarkers) and
multiple read-write worktapes which areS(n) space-bounded. (It is known that any number
of worktapes can be merged into one worktape with the same space bound.) Throughout,
we assume thatS(n) � log n. Note thatNSPACE(n) andDSPACE(n) are the classes of
context-sensitive and deterministic context-sensitive languages, respectively.

Proposition 7 NSPACE(S(n)) and DSPACE(S(n)) are closed underdlad.

Proof. First consider the caseNSPACE(S(n)). Let M be an nondeterministic TM with
a two-way read-only input (with endmarkers) and anS(n) space-bounded read-write work-
tape. We construct anS(n) space-bounded nondeterministic TMM 0 acceptingdlad(L(M)).
Without loss of generality, we may constructM 0 such that it hasseveralS(n) space-bounded
read-write worktapes (since any number of worktapes can be easily merged into one).

Given an input of the formvpyqxpwqz, M 0 will simulate the computation ofM onvpwqxpyqz by first nondeterministically choosing the locations of thepointersp; q; p; q, and
recording them in binary on the worktape usinglog n space. Then the simulation ofM is
implemented byM 0 in the obvious way: the simulation on the input segmentsvp; qxp, andqz is obvious. WhenM computes on input segmentw andy,M 0 moves its input head to the
appropriate pointer locations (stored in the worktapes).

For the case ofDSPACE(S(n)), the construction above still works, but nowM 0 needs to
systematically try (lexicographically) all possible 4-tuple locations ofp; q; p; q. We need to
assume thatM always halts so that a simulation on a current 4-tuple that fails to accept can
be abandoned byM 0 and proceed to the next lexicographic 4-tuple. This assumption can
be made without loss of generality since anyS(n) space-bounded deterministic TM can be
made halting [7]. 2

Clearly, the first part of the proof above applies to unrestricted nondeterministic TMs
(which are equivalent to deterministic TMs), i.e., to recursively enumerable sets:

Corollary 3 The class of recursively enumerable sets is closed underdlad.

One can obtain similar results for time-bounded TMs. For example, letP (NP) denote the
class of languages accepted by polynomial time-bounded deterministic (nondeterministic)
TMs . Then the constructions in the proof of Proposition 7 also proves:

Corollary 4 P and NP are closed underdlad.

Turning now to the operation ofld, we have:

Proposition 8 DSPACE(S(n)), NSPACE(S(n)), P, and NP are not closed underld.
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Proof. Let L � �� be a recursively enumerable language which is not inDSPACE(S(n))
(respectively,NSPACE(S(n)), P, NP). Leta; b;# be new symbols not in�.

One can easily show that there exists a languageL0 in DSPACE(S(n))(respectively,
NSPACE(S(n)), P, NP) such thatL0 consists of words of the formaib#� wherei � 0
and� 2 L. Furthermore, for all� 2 L there exists somei � 0 such thataib#� 2 L0 (see,
e.g., [19]). We now apply theld operation:ld(b � L0) \ b#�� = b#L
butb#L is not inDSPACE(S(n)) (respectively,NSPACE(S(n)), P, NP). 2

However, for unrestricted TMs, it is easy to show:

Proposition 9 The class of recursively enumerable sets is closed underld.

4. L-Systems

We now consider the closure properties of the families of 0L and ET0L languages underld,dlad andhi.
The closure properties of NCM and its generalizations and languages described by space-

and time-bounded Turing machines for thehi operator have already been given in [2]. How-
ever, we wish to consider the closure properties of two families of L-systems here under all
the operations ofhi, ld anddlad. We will thus introduce the formal definition of thehi
operation before we continue.

Definition 4 Let� be a word in�+. The hairpin inverse of�, denoted byhi(�) is defined
ashi(�) = fxpyrprzj� = xpyprz andx; y; z 2 ��; p 2 �+g.

This definition can be extended to languages in�+ in the natural way.
A result similar to Lemma 1 and Lemma 2 showing that we can, without loss of generality,

consider pointers of length one for thehi operation was shown in [2]:

Lemma 4 If � 2 �+, hi(�) = fxayrazj� = xayaz; a 2 �; x; y; z 2 ��g:
We now show that the family of 0L languages is not closed underany of the considered

operations.

Proposition 10 The family of0L languages is not closed underhi, ld or dlad.

Proof. ConsiderL = fag 2 0L. Thenhi(L) = dlad(L) = ld(L) = ;
which is not a 0L language. 2

We now consider the closure properties of the family of ET0L languages.

Proposition 11 ET0L is closed underld.
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Proof. Follows immediately from Proposition 2 as ET0L is a full trio. 2
The proofs for closure of ET0L underhi anddlad are much more involved and are demon-

strated below. We use some definitions used to describe synchronized context-free grammars,
introduced by Jürgensen and Salomaa in [9]. We refer the reader to this paper for more intu-
ition and examples.

A tree domainD is a nonempty finite subset ofN� such that

(i) If � 2 D, then every prefix of� belongs toD,

(ii) For every� 2 D there existsi � 0 such that�j 2 D if and only if 1 � j � i.
Let A be a set. AnA-labelled treeis a mappingt : D ! A, whereD is a tree domain.
Elements ofD are called nodes of the tree andD is said to be the domain oft, dom(t). A
node� 2 dom(t) is labelled byt(�). The set of leaves oft is denoted leaf(t). The subtree oft at node� is t=�. When there is no confusion, we refer to a node simply by its label.

Nodes of a treet that are not leaves are calledinner nodesof t. Theinner tree oft, inner(t),
is the tree obtained fromt by cutting off all the leaves. Theyieldof anA-labelled treet, yd(t),
is the word obtained by concatenating the labels of the leaves oft from left to right; the leaves
being ordered by the lexicographic ordering ofN� . For� 2 dom(t), patht(�) is the sequence
of symbols ofA occurring on the path from the root oft to the node�. For�1; �2 2 leaf(t)
with �1 6= �2, thejoin of �1; �2, denotedjoin(�1; �2) is the longest word� such that� is a
prefix of both�1 and�2. In other words, the join of two leaves is the unique node in which
the two paths split into two distinct paths.

LetG = (N;T; I; P ) be a CF grammar. A(N [ T [ f�g)-labelled treet is aderivation
tree ofG if it satisfies the following conditions:

(i) The root oft is labelled by the initial nonterminal, that is,t(�) = I .

(ii) The leaves oft are labelled by terminals or by the symbol�.

(iii) Let � 2 dom(t) havek immediate successors,k � 1. Thent(�) ! t(�1) : : : t(�k) 2P .

A tree t is a partial derivation tree if (i) and (iii) are satisfied. The set of derivation trees ofG is denotedT (G). The derivation trees ofG are in one-to-one correspondence with the
equivalence classes of derivations ofG producing terminal words, and thusL(G) = fyd(t) j t 2 T (G)g:
Definition 5 A synchronized context-free grammar, SCFgrammar, is a context-free gram-
mar G = (N;T; I; P ); (1)

whereN = V � (S [ f�g) for finite alphabetsV andS.
We call elements ofV the base nonterminalsand elements ofS the situation symbols.

Nonterminals ofV � S are called thesynchronizing nonterminalsofG. Nonterminals of the
formV � f�g, are callednonsynchronizing nonterminals.

We define the morphismhG : (V � (S [ f�g))� �! S� by the conditionhG((v; x)) = x
for all v 2 V andx 2 S [ f�g.
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Definition 6 Let G be anSCF grammar andt 2 T (G). Let t1 = inner(t) and let� 2
leaf(t1). Thesynchronizing sequence(sync-sequence) corresponding to� is seqt1(�) =hG(patht1(�)):
Definition 7 Let G = (N;T; I; P ) be a SCF grammar whereN = V � (S [ f�g).
A derivation treet 2 T (G) is said to bee-acceptable if for all�; � 2 leaf(inner(t)),
seqinner(t)(�) = seqinner(t)(�).

LetG be a SCF grammar. The set ofe-acceptable trees ofG is denoted byTe(G).
Definition 8 The languagee-synchronized generatedbyG is Le(G) = yd(Te(G)): In this
case, we callG ane-SCF grammar. A languageL is ane-SCF language, if there exists aSCF
grammarG such thatL = Le(G).

The family ofe-SCFlanguages is denoted byLe(SCF).
Definition 9 Let G be ane-SCFgrammar. Then we sayG is in binary normal form if all
productions are of the form either(Ax; x) ! (Cy ; y)(Dy; y) or (Ax; x) ! a; x; y 2 S; a 2T [ f�g

It is known that we can assume without loss of generality thatevery e-SCF language is
generated by an e-SCF grammar in binary normal form [1, 14]. Furthermore, it is known that
the family of e-SCF languages is equal to the family of ET0L languages [13].

Intuitively, a derivation tree without nonsynchronizing nonterminals is e-acceptable if at
each height, every nonterminal has the identical situationsymbol. The use of nonsynchro-
nizing nonterminals allows for nonterminals that need not synchronize with nonterminals in
other branches. However, every tree in binary normal form does not have nonsynchronizing
nonterminals. The language e-synchronized generated byG is the language obtained from
the yields of only the e-acceptable derivation trees.

We letV z be the set of all elements ofV with z as superscript (not exponentiation), wherez is a new symbol. Also, we sayv� = v.

Proposition 12 Le(SCF) is closed underhi.
Proof. LetG = (N;T; I; P ) be an SCF grammar whereN = V �(S[f�g) is in binary nor-
mal form. We will first transformG into an intermediate SCF grammarG1 = (N1; T; I 0; P1)
with N1 = V1 � (S [ f�g); V1 = V [ V La [ V Ra [ V LaRa [ fI 0g for all a 2 T and letP1
be defined asP in addition to the following productions:

Let I 0 ! ILaRa; 8a 2 T .
For all productions inP of the form(Ax; x)! (By; y)(Cy ; y), add(ALaRax ; x)! (BLaRay ; y)(Cy; y) j (By ; y)(CLaRay ; y) j (BLay ; y)(CRay ; y),(Azx; x)! (By; y)(Czy ; y) j (Bzy ; y)(Cy; y); 8z 2 fLa;Rag; a 2 T
For all productions inP of the form(Ax; x)! a; a 2 T , add(Azx; x)! a 2 P 0, for z 2 fLa;Rag.
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It is clear2 thatLe(G1) = fw j w 2 Le(G); jwja � 2; for somea 2 Tg. Indeed,G1 nonde-
terministically guesses some terminal,a say, and two paths, only resulting in a derivation tree
if the two paths reach two distinct occurrences of the terminal a. Thus,G1 has the property
that for each e-acceptable derivation tree, each base nonterminal of the left and right path are
marked withLa andRa, respectively, from the root to two distinct leaves, which are labelled
by the same terminal,a. Moreover, for each treet, the two paths separate at some node which
is the unique join which we will denote by�t.

We would like to easily “turn the subtree around” in between the two marked paths, in
order to simulate the effect of thehi operator. It is easy to reverse an entire subtree (as we
will see in the transformation fromG2 to �G), however there may be branches on the subtreet=�t that are either to the left of the left marked path or to the right of the right marked path
(see the first diagram of Figure 1). So, we cannot simply reverse the subtreet=�t.

Consequently, we will next move these branches outside of the two paths using nondeter-
minism.

Next, we transformG1 into G2 = (N2; T; I 0; P2), another intermediate e-SCF grammar
(see Figure 1 for intuition with this step of the construction), whereN2 = V2 � (S2 [f�g); V2 = V [ V La [ V Ra [ V LaRa [ V 0Ra [ fI 0; L;Rg andS2 = S [ V L [ V R, for alla 2 T . P2 has all the productions ofP1, however for alla 2 T , make the following changes:

change productions of the form(ALaRax ; x)! (BLay ; y)(CRay ; y) to,
(1) (ALaRax ; x)! (L; y)(BLay ; y)(CRay ; y)(R; y),
change productions of the form(ALax ; x)! (By; y)(CLay ; y) to,
(2) (ALax ; x)! (CLay ; BLy ) and(CLay ; BLy )! (CLay ; y) j (CLay ; v);8v 2 V R,
change productions of the form(ARax ; x)! (BRay ; y)(Cy; y) to,(ARax ; x)! (BRay ; CRy ) j (B0Ray ; v),(B0Ray ; v)! (BRay ; CRy ),(BRay ; CRy )! (BRay ; y);8v 2 V L.
For all productions of the form(Ax; x)! (By; y)(Cy ; y), add
(3) (Ax; x)! (By; v)(Cy ; v); v 2 V L [ V R.
For all productions of the form(ALax ; x)! (BLay ; y)(Cy; y), add(ALax ; x)! (BLay ; v)(Cy ; v); v 2 V R.
For all productions of the form(ARax ; x)! (By; y)(CRay ; y), add
(4) (ARax ; x)! (By; v)(CRay ; v); v 2 V L.
In addition, add:(ALax ; v)! (ALax ; x);8ALax 2 V La; v 2 V R,(ARax ; v)! (ARax ; x);8ARax 2 V Ra; v 2 V L,(Ax; v)! (Ax; u);8Ax 2 V; v 2 V L [ V R; u 2 V L [ V R [ fxg,(R; r)! (R; s) j �;8r; s 2 S [ V L,(R; s)! (R;ARx )(Ax; ARx );8Ax 2 V; s 2 S [ V L,(R;ARx )! (R; s);8Ax 2 V; s 2 S,(L; r)! (L; s) j �;8r; s 2 S [ V R,
(5) (L; s)! (Ax; ALx )(L;ALx );8Ax 2 V; s 2 S,(L;ARx )! (L; s);8Ax 2 V;8s 2 S [ V R.

2jwja is equal to the number of occurrences of the lettera in the wordw andjwj is the length ofw.
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Let t 2 Te(G1). We construct an accepting treet0 2 Te(G2). We denote by sent(n),
the word obtained by concatenating the labels of all branches of t at heightn from left to
right. We proceed by induction on the height oft. Assume that at heightn of t, the corre-
sponding partial derivation treet0 of heightm constructed so far has sent(n) = h(sent0(m))
whereh is a homomorphism that fixes all nonterminals except it erases those with base
nonterminals ofL andR. There are many cases for heightn + 1. If there is a letter of
sent(n + 1) with LaRa as superscript, thent0 is constructed identically. If sent(n + 1)
has two distinct labels(CLay ; y)(DRay ; y), thent0 is constructed identically, but rather with(L; y)(CLay ; y)(DRay ; y)(R; y) as children of theLaRa node. It is clear that sent(n + 1) =h(sent0(n+ 1)). If at heightn+ 1, there is a branch withLa as superscript which is the left
child of its parent and a branch withRa as superscript which is the right child of its parent,
then all nonterminals oft0 can be rewritten as int and sent(n + 1) = h(sent0(m + 1)).
If at heightn of t, there are two nonterminals(ALax ; x) and (BRax ; x) which have chil-
dren (Cy; y)(DLay ; y) and (Ey; y)(FRay ; y) respectively, then int0, (ALax ; x) has one child(DLay ; CLy ) which has one child(DLay ; y). The nonterminal(L; x) must consequently have
children (Cy; CLy )(L;CLy ) which have children(Cy; y) and (L; y) respectively. Since the
path with every base nonterminal ofL is always directly to the left of the path withLa as
superscript, and all other nonterminals have identical children at heightn+1 of t as in heightm + 2 of t0, sent(n + 1) = h(sent0(m + 2)). The process is symmetric when the left path
branches left and the right branches left. If the left path branches right and the right path
branches left, we use the left symbol first, while the right path waits for the next height.
Thus, by induction, and sinceL;R paths end with�, yd(t) = yd(t0) andLe(G1) � Le(G2).

For the reverse inclusion, we notice that at heights before the join, the tree must rewrite
using only situation symbols fromS since the paths must. After the join, whenever the
left path branches left and the right branch branches right,all nonterminals must use situation
symbols fromS since the paths do (for ane-acceptable tree). Whenever the left path branches
right and the right path branches left, the tree must rewriteusing symbols fromV L; V R thenS since the paths do. Similarly for all other cases. Consequently, there is exactly one tree inTe(G2) for every tree inTe(G1). Thus,Le(G2) � Le(G1).

Hence, we haveLe(G1) = Le(G2). Moreover,G2 has the property that every nonterminal
with La as superscript is the left child or only child of its parent and similarly for the right
path.

Lastly, we transformG2 into �G = ( �N;T; I 0; �P ) where �N = �V � (S2 [ f�g). For all
the productions that can be performed inside the two paths, we add a new production with a
marker�on top of each base nonterminal, with all the the productionsreversed (ie. if original
production isA ! BC, add �A ! �C �B). Then, for the productions used at the join, we
switch the two nonterminals between theL andR path and add a�as superscript, leaving all
productions outside the paths using normal productions. Hence,Le( �G) = hi(Le(G)). 2
Corollary 5 ET0L is closed underhi.

Intuitively, with dlad, we pick four paths, and switch the yield between the first twowith
the yield between the second two. Similarly to the proof above, we will first pick two paths
and manipulate the trees so that each base nonterminals labelled withLa (orRa, respectively)
is the left child (or right) of its parent, then, we will add inthe second set of paths to the right
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Figure 1: A derivation treet 2 Te(G1) and the new derivation treet0 2 Te(G2) corresponding tot.
of the first set and manipulate this subtree so as not to interfere with the first. Indeed, we need
only switch these two subtrees to obtain the desired effect.However, the two joins may be at
different heights, so we must guess at the lower join what thelabel will be at the higher join.

Proposition 13 Le(SCF) is closed underdlad.

Proof. LetG = (N;T; I; P ) be ae-SCF grammar in binary normal form whereN = V �(S [f�g). Similarly to the construction for thehi operator, we will transformG intoG1 and
thenG2 by first picking two paths from root to leaves and then moving all the child branches
of the paths that are outside of the two paths to theL andR branches. The only alteration we
must make to the construction is to allow separate terminalsto be picked as pointers. This can
easily be achieved by adding all productions of the formI ! ILaRb for all a; b 2 T . Also,
instead of usingL andR on superscripts and nonterminals, we replace everywhere with L1
andR1. This is mainly to differentiate between the first set of two paths and the second set
of two paths soon to be added. HenceLe(G2) = fw j w 2 Le(G); jwj � 2g.

Next, we wish to add a second set of paths to each accepting tree ofG2. However, the new
paths can not interfere with the altered subtree of the first two. This is not difficult, as we only
need to restrict the possible placements of the second two paths in the conversion betweenG
andG1.

First, for simplicity, we constructG3 by changing all productions of the form(A; x)! (B; y) to (A; x) ! (B; y)(&; y) for all productions with one nonterminal of the right
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hand side inP2 and adding(&; u)! (&; v)(&; v) j �;8u; v 2 S2. This does not change the
accepted language and all productions either have one terminal, the empty word, two non-
terminals or four nonterminals on the right hand side. Then,we transform,G3 into G4 by
changing all base nonterminals into ordered pairs, keepingtrack of the old base nonterminal
in the first coordinate and the situation symbol in the second. We will also use square brack-
ets for clarity (ie. replace all nonterminals(A; x) in every production ofG3 with ([A; x℄; x)).
This is since the conversion fromG2 to G3 creates trees that no longer keep track of the
situation symbol on the subscript of the base nonterminal.

Next, we transform intoG5 by adding the possible second set of paths to each accepting
tree ofG4 (similarly to the conversion ofG toG1). We will restrict that the second set always
be to the right of the first two. This is achieved as follows:

For all productions of formI 0 ! IL1aR1b; a; b 2 T , change toI 0 ! IL1aR1bL2aR2b and add([Az ; x℄; x)! a;8x 2 S; z 2 fL2a;R2ag.
For all productions of form([AL1aR1b; x℄; x)! ([B; y℄; y)([CL1aR1b; y℄; y), add([Az ; x℄; x)! ([B; y℄; y)([Cz ; y℄; y);8z 2 fL1aR1bL2a; L1aR1bL2aR2bg.
For all productions of form([AL1aR1b; x℄; x)! ([BL1aR1b; y℄; y)([C; y℄; y), add([Az ; x℄; x)! ([Bz ; y℄; y)([C; y℄; y);8z 2 fL1aR1bL2a; L1aR1bL2aR2bg and([AL1aR1bL2aR2b; x℄; x)! ([BL1aR1bL2a; y℄; y)([CR2b; y℄; y) j([BL1aR1b; y℄; y)([CL2aR2b; y℄; y).
For all productions of form([A; x℄; x)! ([B; y℄; y)([C; y℄; y), add([Az ; x℄; x)! ([Bz ; y℄; y)([C; y℄; y) j ([B; y℄; y)([Cz ; y℄; y) ,8z 2 fL2a;R2b; L2aR2bg;8a; b 2 T ,([AL2aR2b; x℄; x) ! ([BL2a; y℄; y)([CR2b; y℄; y);8a; b 2 T .
For all productions of form([A; x℄; x) ! ([L1; y℄; y)([B; y℄; y)([C; y℄; y)([R1; y℄; y), add([Az ; x℄; x)! ([L1; y℄; y)([B; y℄; y)([C; y℄; y)([Rz1 ; y℄; y),

for z 2 fL2a; L2aR2bg;8a; b 2 T .

Thus,Le(G5) = fw j w 2 Le(G); w = u1au2bu3au4bu5; for somea; b 2 T; ui 2 T �g:
Moreover, there are third and fourth paths, both always being on the second path or to the
right of it. They both must end strictly to the right of the second path, hence it can not
continue on the second path after the join of the first two paths.

Now that we have the paths marked for each tree, we can do a similar conversion toG6 as
we did fromG1 toG2 except with respect to theL2a andR2b paths instead ofL1a andL2b
(ie. ignoringL1a andR1a on base nonterminals) and using the second coordinate of thebase
nonterminal instead of the subscript. The only difference that must be considered are with
productions of the form([AL1aR1bL2a; x℄; x)! ([L1; y℄; y)([BL1a; y℄; y)([CR1b; y℄; y)([RL2a1 ; y℄; y):
Here, the tree is not binary, and when theL2 path branches right, it should use the left branch
as situation symbol. Fortunately, nonsynchronizing nonterminals make it easy to do just that.
Instead change the production above to([AL1aR1bL2a; x℄; x)! ([L1; y℄[BL1a; y℄[CR1b; y℄; �)([RL2a1 ; y℄; y)
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and add ([L1; y℄[BL1a; y℄[CR1b; y℄; �)! ([L1; y℄; y)([BL1a; y℄; y)([CR1b; y℄; y)
in advance. Then, when converting, it will pass this new basenonterminal as situation symbol
and theL2 branch will continue by duplicating the original subtree between the first two
paths. Otherwise, we treat other productions with four nonterminals on the right hand side
exactly as we treat two. Since the conversion betweenG1 andG2 will work for arbitrary
grammars with paths marked as inG1, andG5 is of this form except productions with four
nonterminals on the right hand side which we treat similarly, we obtainLe(G6) = Le(G3).

Finally, it suffices to “switch” the two subtrees below the joins. Notice now that the first
two marked paths ofG6 no longer have to be in continuous paths from root to leaves, as
they can be passed at their join to theL2 branch. However, the two subtrees are completely
disjoint, not sharing any nodes. So, we can talk aboutthe left and right subtree since neither
has the other in its subtree.

Currently, when the joins occur, there are either three or four nonterminals on the right
hand side, with only the second and third being between the paths. We wish to switch these
two to the other join. This is easier to do if we need only pass one nonterminal. So, we
transform intoG7 by changing the second and third nonterminal in these productions to
an intermediate nonsynchronizing nonterminal which then immediately gets rewritten to the
original two. We will also mark these nonsynchronizing nonterminals withJ1 or J2 on the
superscript of the base nonterminal if they are the left or right join, respectively. Then, we
convertG7 intoG8 by changing it into binary normal form. This conversion introduces a new
situation symbol,$, which will be used in place of� as situation symbol and will preserve
the yield of the subtree at each join. We convert intoG9 by re-marking the two paths until
the two joins on the superscript by1 and2, only accepting if each reaches a symbol fromV J18 �f$g andV J28 �f$g, respectively. We need to keep track of paths until join which were
not preserved by previous constructions.

We constructG10 = (N10; T; I 0; P10) whereN10 = V10 � (S10 [ f�g by switching
subtrees as follows:

For all productions of form(Aix; x)! (BJi$ ; $)(C$; $), for i = 1; 2, change to
(1) (Aix; x)! (Ji; BJi$ )(C$; BJi$ ),
(2) ( �Aix; x)! (#; BJi$ C$),
(3) (Aix; x)! (D$; BJ1$ DJ2$ )(C$; BJ1$ DJ2$ ); 8D$ 2 V9, if i = 1,
(4) (Aix; x)! (D$; DJ1$ BJ2$ )(C$; DJ1$ BJ2$ ); 8D$ 2 V9, if i = 2.
If Ji is instead superscript on the base nonterminalC$,
(1), (3) and (4) are completely analogous, however we change(2) to
(5) ( �Aix; x)! (B$; CJi$ )(#; CJi$ ).
For all productions of form(Aix; x)! (Biy; y)(Cy; y), add
(6) (Aix; x)! ( �Biy; DJkw )(Dw; DJkw )(Ri; DJkw )(Cy ; DJkw ) 8Dw 2 V9; k 6= i,
(7) ( �Aix; x)! ( �Biy; CRiy ).
For all productions of form(Aix; x)! (By; y)(Ciy; y), add
(8) (Aix; x)! (By; DJkw )( �Ciy; DJkw )(Dw; DJkw )(Ri; DJkw ) 8Dw 2 V9; k 6= i,
(9) ( �Aix; x)! (By; y)( �Ciy ; y).
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For all productions of form(Ax; x)! (By; y)(Cy; y), add
(10)(Ax; x)! (By; u)(Cy ; u) 8u 2 V Ji9 [ V Ri9 [ V J19 V J29 [ V Ji9 V9; 8i.
In addition, add(Ax; u)! (Ax; x); 8u 2 V Ji9 [ V Ri9 [ V J19 V J29 [ V Ji9 V9; 8i,(#; u)! (#; v) j �; 8u 2 V Ji9 [ S9; 8v 2 S9; 8i,
(11)(Ri; x)! (Ri; ARiy )(Ax; ARiy ); 8Ay 2 V9; 8x 2 S9; 8i,(Ri; u)! (Ri; v) j �; 8u 2 S9 [ V Ji9 [ V Jk9 ; 8v 2 S9 [ V Jk9 ; 8i; k 6= i,(Ji; u)! (Ji; v); 8u 2 V Ji9 [ V9 [ V Ri9 [ V Ji9 V9; 8v 2 V9 [ V Ri9 ; 8i,(Ji; u)! (A$; AJk$ ) j (A$; AJk$ B$); 8u 2 S9; 8A$; B$ 2 V9; k 6= i,( �Aix; u)! ( �Aix; x); 8u 2 V Ri9 [ V Jk9 ; k 6= i,(Ri; x)! (B$; AJi$ B$); 8A$; B$ 2 V9.

Let t 2 Te(G9). We will constructt0 2 Te(G10). Constructt0 exactly ast until the
first join. Indeed, this is the only way to constructt0. If both branches reach joins at the
same height, the two paths use productions from (3) and (4) which will switch labels of
the joins using the situation symbol. All other branches at this height simply use this same
situation symbol using (10) and then continue as int. The rest of the tree is identical except
with the two subtrees switched. The only other ways to construct t0 involve all branches
using productions created in (10), however this will not change the yield. If the left path
reaches the join at a higher height, then, at the join, it usesthe production created in (1).
The right path nondeterministically uses the same situation symbol using productions from
either (6) or (8). The situation symbol allows the right pathto continue the subtree at the
left join. However, the yield of this subtree need be betweenthe yield of all branches created
on the right path. The nonterminalJi nondeterministically uses the same situation sequence
as all the other branches until the right path reaches the second join. Also, the right path
continues the derivation using productions from (7) or (9) depending on whether the path
branches left or right. If the path branches right, the passed subtree continues, however
if it branches left, the right child should be continued to the right of the passed subtree.
Consequently, it uses the production in (7) which is continued byRi using the production in
(11). Then, the nonterminalJi continues the subtree at this join. The right path continues
nondeterministically using situation symbols only fromS9. Similarly if the right join occurs
first. Thus,t0 2 Te(G10) and this is the only way to construct an accepting tree.

Hence,Le(G10) = fw j w 2 dlad(Le(G))g. 2
Corollary 6 ET0L is closed underdlad.

5. Language Equations

We now address the solvability of equations of the formld(X) = R, dlad(X) = R whereR
is a given language andX an unknown.

We are able to show that the question of the existence of a solution for equations whereR is regular is decidable, using essentially the same technique as for equations involving
the hi operation, [2]. In fact, we are able to generalize our results to language equations
involving unary operators as follows. Consider language equations of the typeop(X) = R,
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whereop : �+ �! 2�+
is a unary word operation generalized to a language operation in the

natural way:

op(L) = [�2Lop(�); for anyL � �+:
To solve equations of the formop(X) = R, we need the notion of an inverse of the

operationop, defined as follows.

Definition 10 Letop : �+ �! 2�+
be a unary word operation. The inverse of the operationop, denoted byop�1, is defined as the unary word operation with the property that, for allu; v 2 �+, u 2 op(v) iff v 2 op�1(u):

Note that the operation “is the inverse of” is symmetric.

Lemma 5 The inverses of the operationshi; ld; dlad; reversal are respectivelyhi, li, dlad
and reversal whereli is the operation defined asli(u) = fxayazj u = xaz; x; y; z 2 ��; a 2�:g

The existence of an operation inverse toop allows us to address equationsop(X) = R, R
a given language andX the unknown, as follows.

Proposition 14 LetR � �� be a language. If the equationop(X) = R has a solutionL,
then the languageXmax= [op�1(R)℄ is a maximal solution.

Proof. Claim 1: op(Xmax) � R. Proof by contradiction. Suppose there existsu 2op(Xmax) such thatu =2 R. Then clearlyu 2 R. As u 2 op(Xmax), thenu 2 op(v),
wherev 2 Xmax. By the definition of the inverse of a unary operation, this implies thatv 2 op�1(u) � op�1(R). This is a contradiction, sincev 2 Xmax= [op�1(R)℄.

Claim 2: IfL � �+ is a language such thatop(L) � R, thenL � Xmax. We use again a
proof by contradiction. Suppose there existsL � �+ such thatop(L) � R andL 6� Xmax.
Then there must existu 2 L � Xmax. As u =2 Xmax, u 2 op�1(R) which implies thatu 2 op�1(v) with v 2 R. However, sinceu 2 L, we have thatv 2 op(u) � op(L) � R, a
contradiction with the fact thatv 2 R.

Thus if the equationop(X) = R has a solutionL, then by Claim 2L � Xmax. By Claim
1 we have thatR = op(L) � op(Xmax) � R and thusop(Xmax) = R. 2
Proposition 15 If R � �+ is a regular language, the problem of whether of not the equationdlad(X) = R (respectivelyhi(X) = R, ld(X) = R; Xr = R) has a solutionX � �� is
decidable.

Proof. ConstructR0 = [dlad(R)℄ (respectivelyR0 = [hi(R)℄, R0 = [li(R)℄, R0 =[(R)r℄). If the equationdlad(X) = R (respectivelyhi(X) = R, ld(X) = R; Xr = R)
has a solution, then by Proposition 14,R0 is also a solution. A decision algorithm would
thus consist of constructingR0 and checking thatdlad(R0) = R (respectivelyhi(R0) = R,li(R0) = R, R0r = R). Since the equality of regular languages is decidable, andREG is
constructively closed underdlad; hi; li and reversal the proposition follows. (REG is closed
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underli as, for a languageL � �+ we have thatli(L) = s(g(L)) whereg is a gsm defined
so thatg(xay) = xa0y for all x; y 2 ��, a 2 �, while s is the regular substitutions :� [�0 �! 2��

defined ass(a) = a for a 2 � ands(a0) = a��a.) 2
For case whereR is context-free, it turns out that the decidability of existence of solutions

to equationsop(X) = R is obtained whenop is an involution. An involution is a functionf : A �! A with the property thatf(f(x)) = x. For example, the identity and the reversal
operators are involutions.

Proposition 16 If op : 2�� �! 2��
is a unary language operator that is also an involution

then the equationop(X) = R always has a solution.

Proof. The solution to the equation isop(R). 2
6. Conclusions

In this paper we have continued the work in [2, 3] and considered the properties of general-
izations of the bio-operations proposed in [5, 4, 18]:ld, dlad andhi. The language families
NCM(k), NPCM(K) and NFCM(k) were found to be closed under theld operation and, more
generally, it was shown that any full trio is closed under theld operation. The families NCM
and NFCM were shown to be closed underdlad while the families NPCM(0) (CF), NPCM
and NFCM(0) were shown to not be closed.

With respect to language families accepted by time- and space-bounded Turing machines,
we demonstrated that NSPACE(S(n)), DSPACE(S(n)), P andNP were closed underdlad
while the same families were not closed underld.

We then showed that the family of 0L languages is not closed underhi, ld or dlad opera-
tions while the family of ET0L languages is closed under all three operations.

Finally, we considered language equations over thehi; ld anddlad operations, and showed
that it is decidable whether or not a solution to the equationhi(X) = R (respectivelyld(X) = R, dlad(X) = R) exists whenR is a regular language. We further showed that,
in general, ifop is a unary operation with an inverseop�1 then if the equation of the formop(X) = R has a solution,X = [op�1(R)℄ is a maximal solution.

It is our hope that continued study of the abstract properties of these operations will con-
tribute to a better understanding of the underlying biological processes upon which they are
based. Future results on the biology of ciliates will allow us to validate our models, and
conversely, theoretical results will provide insights into what the hard limits of the gene de-
scrambling process are.
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